Feature Branches

Branch new features off from the develop branch:
$ git checkout -b myfeature develop
Switched to a new branch "myfeature"
[update code and commit your changes for this feature ...]

Incorporating a finished feature on develop
Merge finished features into the develop branch for the next release:
$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff myfeature
Updating ealb82a..05e9557
[...]
$ git branch -d myfeature
Deleted branch myfeature (was 05e9557).
$ git push origin develop

feature

develop develop

branches

The --no-ff flag causes the
merge to always create a
new commit object, even if
the merge could be
performed with a fast-
forward. This avoids losing
information about the A
historical existence of a
feature branch and groups
together all commits that
together added the feature

git merge —no-ff git merge

(plain)

Release Branches

May branch off from: develop
Must merge back into: develop and master
Branch naming convention: release-*

Create a release branch
$ git checkout -b release-1.2 develop

[«.-]
$./bump-version.sh 1.2 # some custom script
version bumped to 1.2.
$ git commit -a -m "Bumped version to 1.2"
[release-1.2 74d9424] Bumped version to 1.2

Finish a release branch

1. Merge the release branch into master :
$ git checkout master
Switched to branch 'master’

2. Next, tag that commit on master for future reference:
$ git merge --no-ff release-1.2
Merge made by recursive.
[«..]
$ git tag -a 1.2

3. Merge the release branch into develop:
$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff release-1.2
Merge made by recursive.

[o..]

4. Delete the release branch; we don’t need it anymore:
$ git branch -d release-1.2
Deleted branch release-1.2

Hotfix Branches

May branch off from: master
Must merge back into: develop and master
Branch naming convention: hotfix-*

Hotfix branches are very much like release branches in that they are
also meant to prepare for a new production release, albeit
unplanned.

Create the hotfix branch
$ git checkout -b hotfix-1.2.1 master
Switched to a new branch "hotfix-1.2.1"

Remember to bump the version number after branching off!
$./bump-version.sh 1.2.1 # some script
version bumped to 1.2.1.

$ git commit -a -m "version bump 1.2.1"
[hotfix-1.2.1 4le6lbb] version bump
1.2.1

Then fix the bug in one or more separate commits.
[update code and commit your changes for this hotfix ...]

Finally, summarize the hotfix commit series in a comment:
$ git commit -m "Fixed problem"

Finish a hotfix branch
When finished, merged back into master and back into develop to
ensure that the bugfix is included in the next release.

1. Update master and tag the release.
$ git checkout master
Switched to branch 'master’

$ git merge --no-ff hotfix-1.2.1
Merge made by recursive.

[...]

use the -s or -u <key> flags to sign
the tag cryptographically.
$ git tag -a 1.2.1

2. Include the bugfix in develop, too:
$ git checkout develop
Switched to branch 'develop'

$ git merge --no-ff hotfix-1.2.1
Merge made by recursive.

[vo.]

3. Remove the temporary branch:
$ git branch -d hotfix-1.2.1
Deleted branch hotfix-1.2.1

Notes

This command will default git merge --no-ff

$ git config branch.master.mergeoptions "--no-ff"
Other useful things to remember:

$ git push --all # push all branches

$ git pull --all # pull all branches

$ git push origin mybranch # push a specific branch

